
LLNL-TR-549171

Compiled MPI: Cost-Effective
Exascale Applications
Development

G. Bronevetsky, D. Quinlan, A. Lumsdaine, T.
Hoefler

April 17, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Compiled MPI: Cost-Effective Exascale 
Applications Development 

Greg Bronevetsky, Daniel Quinlan, Torsten Hoefler and Andrew Lumsdaine 

The complexity of petascale and exascale machines makes it increasingly difficult to develop applications 

that can take advantage of them. Future systems are expected to feature billion-way parallelism, 

complex heterogeneous compute nodes and poor availability of memory (Peter Kogge, 2008). This new 

challenge for application development is motivating a significant amount of research and development 

on new programming models and runtime systems designed to simplify large-scale application 

development. Unfortunately, DoE has significant multi-decadal investment in a large family of mission-

critical scientific applications. Scaling these applications to exascale machines will require a significant 

investment that will dwarf the costs of hardware procurement.  A key reason for the difficulty in 

transitioning today's applications to exascale hardware is their reliance on explicit programming 

techniques, such as the Message Passing Interface (MPI) programming model to enable parallelism. 

MPI provides a portable and high performance message-passing system that enables scalable 

performance on a wide variety of platforms. However, it also forces developers to lock the details of 

parallelization together with application logic, making it very difficult to adapt the application to 

significant changes in the underlying system. Further, MPI's explicit interface makes it difficult to 

separate the application's synchronization and communication structure, reducing the amount of 

support that can be provided by compiler and run-time tools. This is in contrast to the recent research 

on more implicit parallel programming models such as Chapel, OpenMP and OpenCL, which promise to 

provide significantly more flexibility at the cost of reimplementing significant portions of the application. 

We are developing CoMPI, a novel compiler-driven approach to enable existing MPI applications to scale 

to exascale systems with minimal modifications that can be made incrementally over the application's 

lifetime. It includes: 

 New set of source code annotations, inserted either manually or automatically, that will clarify the 

application's use of MPI to the compiler infrastructure, enabling greater accuracy where needed  

 A compiler transformation framework that leverages these annotations to transform the original 

MPI source code to improve its performance and scalability 

 Novel MPI runtime implementation techniques that will provide a rich set of functionality extensions 

to be used by applications that have been transformed by our compiler 

 A novel compiler analysis that leverages simple user annotations to automatically extract the 

application's communication structure and  synthesize most complex code annotations 

I. CoMPI Runtime Infrastructure 
Exascale systems will most likely consist of large multi-core nodes with hundreds to thousands of 

processors in a shared memory domain. This hybrid design allows us to take advantage of hybrid 

programming techniques. Many current codes are written in MPI-only style and cannot immediately 

take advantage of shared memory. In this section, we outline runtime techniques to take advantage of 

shared memory architectures. Another feature of exascale systems is the massive number of network 



endpoints. After we described how to transparently optimize MPI codes for hybrid architectures, we will 

show how those optimized codes can be adapted for large-scale networks by automatic detection and 

optimization of communication patterns. 

A. Hybrid MPI 
We have developed Hybrid MPI (HMPI), a wrapper library that sits between the native MPI 

implementation and the application.  HMPI performs the proposed mapping of ranks to threads and 

uses the shared address space to optimize point-to-point and collective communication bound for other 

ranks in the same node.  A program is transformed to use HMPI can be done by following these steps: 

1. Rename the original main function to tmain and remove the call to MPI_Init or 

MPI_Init_thread. 

2. Create a new main function that calls HMPI_Init, which will start threads using tmain. 

3. Replace all MPI calls with calls to equivalent HMPI functions.  

4. Privatize all global variables. 

 Transformations (1)-(3) can easily be performed with a very simple compiler (replacing text statements 

only).  Step (4), the privatization of global variables, can be done by annotating them as thread-private 

(e.g., __thread in GCC), which can also be automated with a compiler, as has been explored in prior 

work [6]. 

Figure 1 compares same-node (i.e., shared memory) message passing performance of MVAPICH2 and 

HMPI.  A shared address space permits simplified synchronization and requires only a single memory 

copy from the send buffer to the receive buffer (MPI normally requires two copies, which may be 

pipelined).  1-byte message latency is reduced from 0.50 microseconds for MVAPICH2 to 0.18 

microseconds for HMPI on the LLNL Sierra cluster, which consists of dual-socket six-core Xeon X5660 

CPUs.  HMPI's peak bandwidth (63,168 mbps) is much higher than that of MVAPICH2 (41,996 mbps) due 

to one less memory copy. For messages larger than 512KB the bandwidth of HMPI and MVAPICH is the 

same. The next optimization shows how bandwidth can be improved for all message sizes. 

B. Sender-Receiver Synergistic Transfer 
In HMPI, on-node data transfers are performed in two steps. First, the sender sends a pointer to a 

message buffer to the receiver. The receiver then copies the message sender’s message buffer using 

memcpy. A single core cannot use all of a node’s bandwidth, so it is possible to speed up such transfers 

by using multiple cores to perform them. We developed a technique where both the sender and 

FIGURE 1: BANDWIDTH AND LATENCY OF MVAPICH 1.6 VS HMPI ON ONE XEON X5660 NODE. 



receiver participate in the transfer of large 

messages (≥8KB). In this algorithm the 

transfer of the message is broken up into 

multiple calls to memcpy. If the sender 

polls its send request and sees that the 

receiver has matched but is still copying, it 

will start copying blocks as well. Figure 2 

shows that this results in significantly higher 

bandwidth for messages ≥8KB on the LLNL 

Sierra cluster. This allows HMPI to 

outperform MVAPICH even for messages 

larger than 512KB.  

 

C. Ownership passing 
The MiniMD benchmark, part of the Mantevo [3] benchmark suite, packs data into a buffer, sends it via 
MPI, then the receiver unpacks. Transferring via 
traditional MPI requires at least one memory copy. 
Since HMPI gives us a single address space for 
ranks on the same node, we can simply pass a 
pointer to the packed buffer from the sender to 
the receiver (using MPI).  The receiver unpacks 
directly from the sender’s buffer, then sends a 0-
byte MPI message back to the sender when it is 
finished. Figure 3 shows the amount of time the 
MiniMD benchmark spends communicating on the 
LLNL Sierra cluster. Those shared memory 
optimizations will improve on-node 
communication performance and reduce energy 
usage. We will now discuss strategies to optimize 
off-node (network) communication performance by transparent communication pattern recognition and 
optimization. 

D. Multi-Version Variables 
MVVs are a form of producer-consumer queue 

established prior to communication between two 

ranks. The producer obtains a buffer, fills it with data, 

and commits it to the MVV. The consumer retrieves 

the buffer and reads the data. Multiple buffers may be 

used inside the queue, but our results show that 

reusing a single buffer gives the best performance due 

to better locality. Normally, a flow control mechanism 

prevents buffers from being exhausted or overwritten 

at the receiver. However, some applications have a 

communication pattern (e.g. nearest-neighbor 

FIGURE 3: COMMUNICATION TIME IN MINIMD USING 

OWNERSHIP PASSING VS. MPI 

FIGURE 4: BANDWIDTH OF MVV VS MPI 

FIGURE 2: IMPROVED PERFORMANCE FROM SYNERGISTIC DATA 

TRANSFER ON XEON X5660 NODE. 



stencils) that implicitly enforce flow control. In these cases, we can omit the flow control included in our 

protocols for better performance. Figure 4 shows the improvement in bandwidth that results from using 

MVVs with different numbers of buffers over traditional MPI implementations. 

E. Detection of Collectives with GOAL 
Exascale systems will exhibit massive 

communication networks and optimizations of 

communication patterns will become mandatory. 

In addition, many parallel languages, such as Co-

Array Fortran, do not offer high-level abstractions 

for collective communication primitives. Even if 

support for some collectives is provided, such 

support is never exhaustive, as new numerical 

methods possibly can make use of new collective 

communication patterns, such as neighborhood 

collectives.  Using GOAL we are able to 

dynamically build the communication graph of a 

communication phase of an application. Such a 

communication graph contains all information 

needed to recognize the data-movement pattern 

of such a phase. We introduced a concise notation 

for such data-movement patterns which we call 

Single Static Transfer notation.  

 After we have extracted the communication structure of a code we can compare the found structure 

with that of high-level communication primitives for which the current machine or software stack offers 

tuned implementations, such as many 

MPI collective functions. Replacing such 

codes with the appropriate calls to the 

optimized function at runtime can 

decrease the communication time by an 

order of magnitude.  As Figure 6 shows, 

the performance benefits of this 

optimization pay off almost 

immediately: On a 4000 process 

allocation our optimization pays off after 

the second iteration through the 

communication phase of a Co-Array 

Fortran program implementing a 

Broadcast. 

  

FIGURE 5: DETECTING COLLECTIVES 

FIGURE 6: PERFORMANCE OF TRANSFORMED COLLECTIVES 



II. Compiler Infrastructure 

A. ROSE Dataflow 
The ROSE compiler provides state of the art capabilities for analyzing and transforming applications 

written in the major DoE languages, including C, C++ and Fortran. Various tools successfully use the 

ROSE Abstract Syntax Tree (AST) to extract important information about the application structure and 

such analyses have been further simplified via additional features such as the system dependence 

graphs and def-use chains. However, while the analysis capabilities of ROSE have grown stronger over 

the last several years at the start of the CoMPI project ROSE did not include support for the dataflow 

framework [2] and the Static Single Assignment (SSA) representation [5], two fundamental tools for 

compiler analysis that were required for our work.  

As part of the CoMPI project we are developing a new infrastructure that supports dataflow analyses 

and symbolic evaluation on top of Control-Flow Graphs (CFGs) in dense as well as SSA forms. This 

framework is designed to be generic: arbitrary intra- and inter-procedural analyses can be coupled to 

each other. Further, memory locations and functions are represented using abstractions that can be 

implemented with arbitrary degrees of precisions by external analyses. For instance, a pointer analysis 

may be able to infer that two pointers do not alias each other. This information is then abstracted 

behind our memory location interface and any other analysis can gain the benefit of increased precision 

from knowing that the targets of the pointers may never be the same, without explicitly considering 

how this information was computed. This powerful capability will make it possible to plug together 

different analyses with different precision/performance trade-offs without having to explicitly write 

them to be aware of each other.  

While advanced analysis capabilities will make it possible to infer useful facts about applications and to 

select optimizations, transforming applications to implement these optimizations is difficult. This is 

because ROSE, being a source-to-source compiler, represents the application as an AST. While useful for 

producing source code, transformations of the AST can be difficult because they must account for many 

details of the source language. For example, given the expression a=foo()+bar()*baz(), to insert 

a to call printf() after the multiplication (and the side-effects of bar 

and baz) is done but before the addition (and the side-effects of foo) 

has started it is necessary to transform it into the code in Figure 7. We 

have developed a new ROSE transformation API that makes it possible 

for analyses to implement transformations on the higher-level CFG and have the results be directly 

applied to the AST. This enables analysis and transformation developers to reason about the application 

at a high level while still gaining the advantages of the ROSE compiler and source-to-source compilation 

in general. 

B. Send-Receive Fusion 
Although processors with multiple (or many) cores and shared memory are becoming ubiquitous, MPI 

enforces copies between source and target processes and thus cannot fully utilize shared memory and 

cache architectures of modern machines. To enable MPI-based programs to more fully exploit features 

of multi- and many-core architectures, we developed a compiler-based transformation that fuses 

message serialization and deserialization loops such that send and receive calls can be replaced by direct 

memory accesses. Our compiler replaces most of the MPI communication functions with direct 

FIGURE 7: TRANSFORMED CODE 

t mp = bar ( ) * baz( ) ;  
pr i nt f ( ) ;  
a=f oo( ) * t mp;  



load/store accesses and our runtime provides a threaded MPI implementation to handle the remaining 

functions. 

1. Approach 

Our compiler analysis operates on application code that explicitly serializes data into, and deserializes 

data from, a serial representation. The analysis 

detects serialization and deserialization by MPI ranks 

executing on the same node and fuses those 

operations into a single loop that directly transfers 

data from sender to receiver without the use of 

intermediate buffers. This optimization can 

significantly improve performance in the case where 

both ranks execute on the same node and also in 

cases where the interconnection network supports 

efficient fine-grained remote memory access [5]. 

Figure 8 shows a motivating example for our 

transformation, extracted from the MiniMD 

benchmark. In the original code, a sender rank 

serializes an array of local atom records into buffer 

sbuf and uses MPI point-to-point communication to 

copy it to buffer rbuf on the receiver rank. This 

buffer is then deserialized into the receiver's atom 

data structure writing the incoming entries after the 

existing ones. 

Since both loops iterate over the same sequence of 

buffer indices, the write to sbuf[k] by the sender 

corresponds to the read from rbuf[k] by the 

receiver.  As such, the right-hand-side of the write to 

sbuf[k] produces the value that is ultimately copied to the left-hand-side of the read from 

rbuf[k]. Our transformation thus aligns the iterations of both loops to directly copy the data with no  

intermediate buffering. 

This is shown in the Transformed code in Figure 8, where the serialize and deserialize loops have been 

fused to so that the receiver executes the entire data transfer in one pass. The new code also includes 

additional synchronization to ensure the data is delivered from the sender as well as transfers of the 

variables and pointers used in the sender's code to make them accessible by the receiver. It also valid if 

the fused loop is executed by the sender. The resulting code uses the original specification of parallelism 

from the MPI code but implements it in a way that is inherently suited to shared memory hardware.  

2. Outline of Transformations 

“Serialization code” is the code region that writes data into a buffer passed to a send operation (e.g. 

MPI_Send, MPI_Isend). “Deserialization code” is the code region that reads data from the receive 

operation (MPI_Recv, MPI_Irecv) that matches the send operation. Our work focuses on the 

common case where the serialization and deserialization loops iterate over the communication buffer in 

FIGURE 8: FUSION OF SERIALIZE/DESERIALIZE CODE 



the same monotonic order. If the amount of data sent is computed during the serialization code, we 

assume that it is also sent in another message. Our algorithm for fusing serialize and deserialize code 

operates in two steps.  First, the loop on one rank in the exchange is transformed so that it can execute 

on the other rank. This produces a single code region, executed by one of the ranks, that includes both 

loops and can be analyzed as a unit. Second, the control flow graphs of the loops are fused into a single 

graph that executes the statements of both loops in an order guaranteed not to violate the application's 

original data flow dependencies. 

The transformation that enables code on one MPI rank to be executed by other ranks on the same node 

works by sending the initial values of live variables (those used in the migrated code) from the source 

rank to the destination rank, running the migrated code using these local copies of the variables and 

finally sending the result of the computation back from the destination rank to the source rank. Since 

the pointers used by the migrated code still refer to the same data structures in shared memory, it has 

exactly the same effect on these data structures regardless of which rank it is actually executed in. 

The code fusion transformation takes the serialization and deserialization loops that are now both 

executed on either the sender or the receiver rank and fuses them into a single piece of code that 

transfers data from the sender's data structures to the receiver's. This transformation analyzes the 

linear expressions used by both code regions to index the send and receive buffers. It then moves 

expressions from the deserialization loop inside the serialization loop, while ensuring that each 

serialized value is consumed by the deserialization code after it is produced by the serialization code. 

FIGURE 9: COMMUNICATION TIME OF ORIGINAL MPI AND HMPI CODE VS. HMPI+FUSION 



Figure 9 shows that loop fusion improves the performance of the MiniMD benchmark and an FFT kernel, 

showing the communication time of MVAPICH 1.7, HMPI and HMPI with loop fusion. Results are shown 

on the LLNL Sierra cluster (dual-socket six-core Xeon X5660 CPUs) and the Hera cluster (quad-socket 

four-core Opteron 8356 CPUs). At all scales HMPI performs better than MVAPICH and loop fusion is 

significantly faster than HMPI. 

III. Summary 
The goal of the CoMPI project is to help legacy MPI applications reach exascale performance while 

making only incremental changes to their source code}, thus gaining most of the benefits of implicit 

programming models without most of the costs. By providing developers with unprecedented levels of 

compiler and runtime support, CoMPI will enable them to focus on new science and to concentrate their 

reimplementation efforts on the few portions of their applications that require truly new numerical 

methods rather than new ways of expressing them. 

We are planning to generate optimized HMPI code from our compiler passes. In addition to that, we 

plan to extract static communication regions from legqcy MPI codes and instantiate and optimize GOAL 

communication graphs. This will lead to automatic collective detection and communication 

optimizations.  

IV. Bibliography 
1. B. Arimilli, R. A. (2010). The PERCS High-Performance Interconnect. Symposium on High-

Performance Interconnects.  

2. Kildall, G. (1973). A Unified Approach to Global Program Optimization. ACM SIGACT-SIGPLAN 

Symposium on Principles of Programming Languages (POPL).  

3. Michael A. Heroux, D. W. (2009). Improving Performance via Mini-applications. Sandia National 

Laboratory, SAND2009-5574. 

4. Peter Kogge, e. (2008). ExaScale Computing Study: Technology Challenges in Achieving Exascale 

Systems. Defense Advanced Research Projects Agency. 

5. Ron Cytron, J. F., & Barry K. Rosen, M. N. (1991). Efficiently Computing Static Single Assignment 

Form and the Control Dependence Graph. ACM Transactions on Programming Languages and 

Systems, 451–490. 

6. Stas Negara, G. Z.-C. (2010). Automatic MPI to AMPI Program Transformation using Photran. 

Workshop on Productivity and Performance (PROPER).  



Impact and Champions Milestones/Dates/Status 

Novel Ideas 

PIs: Greg Bronevetsky, Dan Quinlan, LLNL, 

        Andrew Lumstaine, IU, Torsten Hoefler, UIUC 

10/04/2011 

               Scheduled               Actual  

 Develop Prototype                        May 2011                 May 2011 

  Dataflow Framework  

 Develop Prototype                         Sep 2011                Sep 2011 

   Performance Optimizations 

 Develop Formal Model of              Feb 2012                Feb 2012 

   Parallel Protocols 

 Develop Production Dataflow       Sep 2012          

   Framework (SSA, Polyhedral) 

 Develop Formal Validation Tools Feb 2013  

 Develop Parallel  

   Dataflow Analysis Framework     Mar 2013 

 Integrate Analysis and Runtime   Jun 2013 

   Optimizations 

Billions of dollars and decades of effort invested in 

today’s MPI applications. Project will enable DoE to 

leverage this investment on Exascale systems. We 

will use compiler analyses to capture the structure 

of MPI applications and eliminate the performance 

bottlenecks that constrain performance at large 

scales and many-core nodes. Approach will 

leverage explicit, locality-aware parallelism 

available in MPI applications to maintain high 

performance on future systems with reduced need 

for manual performance tuning. 

MPI is the dominant DoE programming model. Cost of 

revolutionary migration for MPI applications to Exascale 

prohibitively high! Need evolutionary path to Exascale 

performance for MPI applications. 

• Developers describe parallel structure of application 

via annotations 

• Used by compiler to implement transformations 

• Extend MPI runtime to use compile-time information 

• Compiler analyses automatically derive most 

complex annotations 

IMD 

Extended MPI 

Compiled Application 

MPI 

Application 

Compiled MPI: Cost Effective Exascale  
Application Development 

Revolutionary performance, evolutionary development. 



Goals Runtime: Communication Protocols 

Compiler: Communication Structure Analysis Runtime: Group Operation Assembly Language 

Our first strategy is to transform two-sided 

communication into more scalable alternatives. For 

instance, we optimize same-node communication by MPI 

ranks on each node as threads, enabling them to 

communicate more efficiently using hardware shared 

memory. First, we can transfer messages using one 

memory copy (MPI normally requires two). We can 

further improve performance for large messages by 

having both the sender and receiver perform parts of the 

copy (top).  Second, we can replace message passing 

with ownership passing.  Instead of copying the data, the 

sender passes ownership of its buffer to the receiver and 

avoids incurring the cost of copying (bottom). 

Compiled MPI: Cost-Effective Exascale Application Development 
 

Daniel Quinlan, Greg Bronevetsky: Lawrence Livermore National Laboratory,  

Andrew Lumsdaine, Indiana University and Torsten Hoefler, University of Illinois at Urbana-Champaign. 

NetPIPE Bandwidth  

(higher is better) 

Communication Time  

in miniMD 

We are developing a compiler analysis 

infrastructure to statically match MPI send 

and receive operations. The analysis 

abstracts the behaviors of any number of 

processes into a few equivalence classes 

and symbolically matches send and 

receive expressions. It will be used to 

reduce the cost of receive matching and 

to replace collective communication 

patterns with optimized implementations. 

Recv(rank+1) 

Rank 0 Rank np-1 Ranks 1..np-2 

Recv(rank+1) Recv(rank-1) 

Isend(rank+1) Isend(rank-1) 

Control flow Communication 

Recv(rank-1) 

Isend(rank+1) 

Isend(rank-1) 

We are also working to improve cross-node communication performance 

by using programmer annotations to identify and restructure the 

application’s communication pattern. Using this Group Operation Assembly 

Language (GOAL) we are able to dynamically build the communication 

graph of a communication phase of an application. Such a communication 

graph contains all information needed to recognize the data-movement       

• MPI is the dominant DoE programming model, billions invested in applications 

• Exascale systems pose new programming challenges 

• New programming models designed to reach Exascale performance 

• Cost of revolutionary migration is prohibitively high! 

• Need evolutionary path to Exascale performance for MPI applications 

• Approach 

• Developers annotate their code with description of parallel structure 

• Compiler uses annotations to implement transformations 

• Extend MPI runtime to take advantage of compile-time information 

• Compiler analyses to automatically derive most complex annotations 

pattern of such a phase. Our experiments  

show the result of transforming a naïve 

point-to-point broadcast implementation into 

the equivalent collective on 4000 

processors. The optimized version scales 

better, quickly amortizing the cost of 

detecting and optimizing the communication 

pattern. 

If a send and receive operation are executed in the same shared memory domain, 

their data packing and unpacking code can be fused so that data is copied directly 

from the sender’s to the receiver’s data structure. We are developing a compiler 

analysis and transformation to perform this fusion. 



Compiled MPI: Cost-Effective Exascale Application Development 

Daniel Quinlan, Greg Bronevetsky: Lawrence Livermore National Laboratory,  

Andrew Lumsdaine, Indiana University and  

Torsten Hoefler, University of Illinois at Urbana-Champaign. 

The complexity of Petascale and Exascale machines makes it increasingly difficult to develop applications that can 

take advantage of them. Future systems are expected to feature billion-way parallelism, complex heterogeneous 

compute nodes and poor availability of memory. This new challenge for application development is motivating a 

significant amount of research and development on new programming models and runtime systems designed to 

simplify large-scale application development. Unfortunately, DoE has significant multi-decadal investment in a large 

family of mission-critical scientific applications. Scaling these applications to Exascale machines will require a 

significant investment that will dwarf the costs of hardware procurement.  A key reason for the difficulty in 

transitioning today's applications to Exascale hardware is their reliance on explicit programming techniques, such as 

the Message Passing Interface (MPI) programming model to enable parallelism.  

MPI provides a portable and high performance message-passing system that enables scalable performance on a wide 

variety of platforms. However, it also forces developers to lock the details of parallelization together with application 

logic, making it very difficult to adapt the application to significant changes in the underlying system.  

Further, MPI's explicit interface makes it difficult to describe the application's synchronization and communication 

structure, reducing the amount of support that can be provided by the compiler and run-time tools. This is in contrast 

to recent research on more implicit parallel programming models such as X10, Chapel, OpenMP and OpenCL, which 

promise to provide significantly more flexibility at the cost of reimplementing significant portions of the application. 

Compiled MPI (CoMPI) is a novel compiler-driven approach to enable existing MPI applications to scale to Exascale 

systems with minimal modifications that can be made incrementally over the application's lifetime. It includes: 

 A new set of source code annotations, inserted either manually or automatically, that will clarify the 

application's use of MPI to the compiler infrastructure, enabling greater accuracy where needed, 

 A compiler transformation framework that leverages these annotations to transform the original MPI source 

code to improve its performance and scalability, 

 Novel MPI runtime implementation techniques that will provide a rich set of functionality extensions that will 

be used by applications that have been transformed by our compiler, 

 A novel compiler analysis that leverages simple user annotations to automatically extract the application's 

communication structure and synthesize most complex code annotations. 

CoMPI is based on the R&D 100 award-winning ROSE compiler and production Open MPI implementation of MPI, 

enabling it to target complex DoE Applications and become a practical tool.  

The final deliverable of this project will be a system that will help legacy MPI applications reach Exascale 

performance while making only incremental changes to their source code, thus gaining most of the benefits of 

implicit programming models without most of the costs. By providing developers with unprecedented levels of 

compiler and runtime support, this system will enable them to focus on new science and to concentrate their 

reimplementation efforts on the few portions of their applications that require truly new numerical methods rather 

than new ways of expressing them. 



Selected Research Thrusts 
 

Communication Protocols 

Our first strategy is to transform two-sided communication into more scalable alternatives. For instance, we optimize 

same-node communication by MPI ranks on each node as threads, enabling them to communicate more efficiently 

using hardware shared memory. First, we can transfer messages using one memory copy (MPI normally requires two).  

We can further improve performance for large messages by having both the sender and receiver perform parts of the 

copy (left figure).  Second, we can replace message passing with ownership passing.  Instead of copying the, the 

sender passes ownership of its buffer to the receiver and avoids incurring the cost of copying (middle figure). 

We are also working to improve cross-node communication performance by using programmer annotations to 

identify and restructure the application’s communication pattern. Our experiments (right figure) show the result of 

transforming a naïve point-to-point broadcast implementation into the equivalent collective on 4000 processors. The 

optimized version scales better, quickly amortizing the cost of detecting and optimizing the communication pattern. 

 

 
NetPIPE Bandwidth (higher is better) MiniMD Communication Time  

(lower is better) 

 
Performance Improvement from 

Restructuring 

 

 

Compiler Analyses and Transformations 

Communication Structure Analysis: 

We are developing a compiler analysis infrastructure to statically 
match MPI send and receive operations. The analysis abstracts the 
behaviors of an unbounded number of processes into a few 
equivalence classes and uses symbolic inference to connect matching 
send and receive expressions. This analysis will be used to reduce the 
cost of receive matching and to detect collective communication 
patterns and replace them with implementations optimized for the 
target platform. 

 

  

Send-Receive Fusion: 

If a send and receive operation are executed in the same shared memory domain, their data packing and unpacking 

code can be fused so that data is copied directly from the sender’s to the receiver’s data structure. We are developing 

a compiler analysis to perform this fusion. 

Original Code Transformed Code 

for(i=0; i<numAtoms; i++) 
   if(borderAtom(i)) { 
      buf[len] = atoms[i]; 
      len++; 
      totalAtoms--; 
   } 
MPI_Send(buf, len);               

MPI_Recv(buf, status); 
MPI_Get_count(status, &len) 
for(j=0; j<len; j++) { 
   atoms[totalAtoms] = buf[j]; 
   totalAtoms++; 
} 

for(i=0; i<numAtoms; i++) 
   if(borderAtom(i)) { 
      remote->atoms[remote->totalAtoms] = atoms[i]; 
      remote->totalAtoms++; 
      len++; 
      totalAtoms--; 
   } 

 10

 100

 1000

 10000

 100000

 1e+06

 1  2  4  8
 1

6
 3

2
 6

4
 1

2
8

 2
5
6

 5
1
2

1
k

2
k

4
k

8
k

1
6

k
3
2

k
6
4

k
1

2
8

k
2

5
6

k
5

1
2

k
1
m

2
m

4
m

8
m

1
6
m

3
2
m

B
a

n
d
w

id
th

 (
m

b
p
s
)

Message Size (bytes)

MVAPICH2 1.6
Hybrid MPI Receiver memcpy

Hybrid MPI Sender/Receiver memcpy

 0.1

 1

 10

 100

 20  30  40  50  60  70  80

C
o

m
m

u
n
ic

a
ti
o
n
 T

im
e

 (
s
e

c
o

n
d
s
)

Problem Size (NxNxN)

MVAPICH2 1.6
Hybrid MPI Ownership Passing



Lawrence Livermore National Laboratory 

Greg Bronevetsky, Daniel Quinlan,  
Peter Pirkelbauer, Chunhua Liao,  

Andrew Friedley, Andrew Lumsdaine, and 

Torsten Hoefler 

Compiled MPI: Cost-Effective Exascale 
Applications Development 



LLNL-PRES-583412 

Lawrence Livermore National Laboratory 

Bringing MPI to the Exascale era 

 Multi-billion dollar investment in MPI apps 
Highly effective at getting petascale performance 

 MPI is generally considered Dead… 
 

 MPI is well-suited to Exascale systems 
• Communication is explicit 

• Distributed memory enforces locality by default 

• Various features to implement asynchronous 
algorithms 

 The problem is Today’s MPI implementations 



LLNL-PRES-583412 

Lawrence Livermore National Laboratory 

Developing runtime and compile-time 
techniques to ensure high MPI performance 

 Runtime Thrust 

• Hierarchical MPI 

• MPI Optimizations 

• Detection and Synthesis of Collectives 

 Compiler Thrust 

• Send-Receive Fusion 

• Buffer Structure Analysis 

• Communication Pattern Detection 


